FAS|智力|程式|收集||||搜索|Join FAS


FAS关于情报改革项目

铆钉关节

USAF RC-135V/W RIVET联合监视飞机配备了广泛的精致情报收集设备,使军事专家可以监视对手的电子活动。由于延伸的“猪鼻子”和“猪脸颊”,这架飞机也被称为“ RJ”。铆钉关节在1990年代被广泛使用 - 在沙漠风暴,海地的占领期间,最近一次是在波斯尼亚。使用自动和手动设备,电子和情报专家可以精确定位,记录和分析电磁频谱中所做的很多事情。1999年末,加入了转换后的C-135B,14架铆钉关节飞机的车队增加到15架。喷气式飞机的转换耗资约9000万美元。

基本角色包括:

这铆钉关节aircraft are capable of conducting ELINT and COMINT intercept operations against targets at ranges of up to 240 kilometers [in contrast to the 280 kilometer intercept range of the higher-flying U-2].

由内布拉斯州空军基地第55翼运营的铆钉联合飞机为剧院指挥官和战斗部队提供了直接的,接近实时的侦察信息和电子战支持。为了支持第55位,第95侦察中队在米尔登霍尔(Mildenhall)外面运作,并为飞行员和导航员提供飞机。第488情报中队为在飞机后部工作的情报人员提供了。自1995年12月21日至1996年5月的联合努力开始以来,第95和第488小时飞行了625小时和72架,以支持波斯尼亚 - 黑塞哥维那的维持和平行动。

Rivet联合(RC-135V/W)是一个可加油的剧院资产,具有全国任务优先级。它收集,分析,报告和利用敌人的BM/C4I。ReportsReports在大多数意外事件中,它都以TACS的空降元素(AWAC,ABCCC,联合明星等)部署到运营剧院,并根据需要通过Datalinks和Soice连接到飞机。飞机具有安全的UHF,VHF,HF和SATCOM通信。通过战术数字信息链接tadil/a或通过卫星和战术信息广播服务(TIBS)(TIBS)将精致的情报数据从铆钉关节转移到AWAC,这是一个几乎实时的剧院信息广播。

Upgrades

战术通用数据链接(TCDL)正在开发一个家族CDL-compatible,低成本, light weight, digital data links for initial application to unmanned aerial vehicles. Normally the data returns with the collecting aircraft to be downloaded and processed at base. A long-standing need remains to provide the theater CINC and/or the National Command Authority (NCA) with the ELINT environment in real-time. In the future TCDL design is expected to be extended to additional manned and unmanned applications, including RIVET JOINT. The TCDL will operate in Ku band and will be interoperable with the existing CDL at the 200 Kbps forward link and 10.71 Mbps return link data rates and is expected to interface to the Tactical Control System (TCS).

1997年2月12日,洛克希德·马丁公司桑德斯(Sanders联合SIGINT航空电子家庭(JSAF)低频带子系统(LBSS)。主要分包商包括:基数技术, Inc. of Mountain View, Calif.; Applied Signal Technologies (APSG) of Sunnyvale, Calif.; and TRW System Integration Group, also of Sunnyvale. Radix will provide radio frequency (RF) and digital signal processing subsystems; APSG will develop special signal processing subsystems; and TRW will be responsible for high speed networking and computing subsystems. The JSAF low band subsystem is a platform-independent, modular, reconfigurable suite of hardware and software that can address multiple mission scenarios aboard a variety of aircraft. It will significantly enhance the ability of reconnaissance platforms to detect and locate modern enemy communications systems and provide real time intelligence on enemy intentions and capabilities to the warfighter. Initially, JSAF LBSS will be deployed on U.S. Air Force RC-135 Rivet Joint aircraft and other special Air Force platforms as well as the U.S. Army's RC-7 (Airborne Reconnaissance Low) and the U.S. Navy's EP-3 aircraft. JSAF LBSS will also be capable of deployment on unmanned air vehicles (UAVs) in the future. JSAF collection systems intercept, exploit, and report on modern modulation and low probability of detection communications and radar signals. It permits the collection of signals in the presence of co-channel interfering signals, and provides interoperability between primary DOD airborne collection platforms, establishing the infrastructure to support near-real-time exchange of information for rapid signal geolocation and targeting. Provide compliance with DOD directed Joint Airborne SIGINT Architecture (JASA). Current aircraft architecture and collection system have insufficient capability to intercept modern modulation and low probability of detection communications and radar signals. System requires improvements to accurately measure signal polarization and angle of arrival to the required accuracy, and to process signals in the presence of co-channel interfering signals. DOD airborne collection platforms do not operate under a common architecture and are limited in their ability to exchange data among platforms for the purpose of rapid signal triangulation for geolocation and targeting. Four aircraft undergo PDM per year. Current funding in FY01/02 only supports JSAF modification for three of the four aircraft during those years. Result will be 2 different aircraft configurations moving thorugh PDM. The impact includes dual qualified aircrews, split logistics, increased training, increased cost for "out-of-cycle" modification.

Rivet联合空降Sigint建筑(JASA)高带子系统(HBSS)升级procures and installs upgrades to the RIVET JOINT's high band antennas, RF distribution network, and software to intercept, exploit, and report on modern modulation and low probability of detection communications and radar signals. It permits the collection of signals in the presence of co-channel interfering signals, and provides interoperability between primary DOD airborne collection platforms, establishing the infrastructure to support near-real-time exchange of information for rapid signal geolocation and targeting. Provide compliance with DOD directed Joint Airborne SIGINT Architecture (JASA). The JSAF CRD (CAF 002-88 Joint CAF -USA, USN, USMC CAPSTONE Requirements Document for JOINT SIGINT AVIONICS FAMILY) requires all airborne reconnaissance aircraft to migrate to JASA compliance by 2010. Current aircraft architecture and collection system have insufficient capability to intercept modern modulation and low probability of detection communications and radar signals. System requires improvements to accurately measure signal polarization and angle of arrival to the required accuracy, and to process signals in the presence of co-channel interfering signals. DOD airborne collection platforms do not operate under a common architecture and are limited in their ability to exchange data among platforms for the purpose of rapid signal triangulation for geolocation and targeting.

铆钉接头SHF高增益可通道的光束天线升级Iwill procure and install a new antenna array in the cheek to provide increased sensitivity and signal separation for selected frequency bands. It provides an increased number of steerable beams in bands that currently have steerable beams, and provides steerable beams in bands not currently steerable beam capable. Increases the number of signals that can be processed simultaneously and increases signal selectivity against co-channel signals. Increasing number of low power signals and increased signal density have decreased the ability to collect tasked targets due to co-channel signal interference. Antenna improvements permit deeper target penetration against low power emitters or increased standoff ranges. The current SHF antenna array does not provide the sensitivity or selectivity required to collect low power or co-channel signals, reducing probability of intercept.

铆钉接头SHF高增益可通道的光束天线升级II获得并安装一个新的天线阵的cheek to provide increased sensitivity and signal separation in selected frequency bands. Provides an increased number of steerable beams in bands that currently have steerable beams, and provides steerable beams in bands not currently steerable beam capable. Increases the number of signals that can be processed simultaneously and increases signal selectivity against co-channel signals. Increasing number of low power signals and increased signal density have decreased the ability to collect tasked targets. Antenna improvements permit deeper target penetration against low power emitters or increased standoff ranges. The current SHF antenna array does not provide the sensitivity or selectivity required to collect low power or co-channel signals, reducing probability of intercept.

铆钉关节高频(HF)方向发现(DF)系统在铆钉接头上采购并安装十个元素HF阵列天线,以提供HF DF功能。升级Sigint Avionics家族(JSAF)低潮子系统(LBSS)接收器以处理HF DF。当前的铆钉关节HF能力仅限于长线天线。该配置支持信号接收,但不支持HF DF。该飞机的任务是执行所有军事重要信号的搜索,分类,收集和DF。此任务包括HF频段中的信号。没有HF DF,在这个日益显着的频段中,飞机将继续没有DF能力。需要一个十个元素HF天线阵列和接收器升级来执行HF DF操作。如果没有安装十个元素HF天线阵列,铆钉接头将无法满足HF频段中DF信号的要求。

铆钉关节360 o搜索,获取和指导查找系统采购并安装一个旨在搜索,获取和DF发射器的圆形天线阵列和接收器系统。天线将安装在飞机底侧上的中心线。天线输出将路由到专用于360的新接收器 o截距。接收器输出将路由到现有处理器进行开发。提出的强度将保留当前系统的高灵敏度和地理位置精度,同时添加专门针对360的额外天线阵列和接收器 o覆盖范围。Rivet联合目前无法满足整个360的搜索,获取和DF发射器的长期要求 o。这current radar acquisition and DF systems have a limited field of view, restricted to 120 o在飞机的每一侧。此外,操作员只能选择一侧或另一侧。飞机通常用于需要更大的天线视野的轨道,通常是从飞机的两侧或鼻子和尾部。机组人员目前通过从一侧到另一侧进行天线选择以及更换飞机标题来完成此任务。这些策略提供了顺序的,而不是同时探讨目标区域,并构成了缺少短时和低差异发射器的显着概率。

铆钉联合宽带视线数据链接在飞机上采购,安装和集成了宽带数据链接终端。Datalink将具有视线能力。Datalink将与地面管道资产互操作,以进行数据交换和开发。允许对无人机传感器的空降剥削。提供了合作方向查找的能力,用于接近瞬时目标地理位置。允许机组人员借鉴剧情报中心数据库和处理能力。提供剧院资产之间的近实时相互作用,增加了拦截目标的可能性,并提高了目标位置的地理位置准确性。空降侦察平台需要宽带数据链接以在平台之间进行交互,以便提供高可能性检测的可能性,提供准确,及时的目标地理位置,利用剧院的Atabase和处理能力来利用稳健的信号,并允许空气寄生能够访问无人机传感器数据。没有此升级,Rivet联合飞机将无法在剧院内侦察平台之间交换数据,并利用基于CONUS的国家资产来交换数据,合作地进行地理位置目标以及在近实时实现强大的目标。

Rivet联合宽带SATCOM数据链接/全球广播服务(GBS)在飞机上采购,安装和集成了宽带数据链接终端。DataLink将扩展宽带线数据链接的功能,以添加SATCOM。Datalink将与地面管道资产互操作,以进行数据交换和开发。允许对无人机传感器的空降剥削。提供了合作方向查找的能力,用于接近瞬时目标地理位置。允许机组人员借鉴剧情报中心数据库和处理能力,或者为CONUS Intellius Center数据库和处理能力提供伸手可及。提供剧院和国家资产之间的近实时互动,增加拦截目标的可能性,并提高目标位置的地理位置准确性。终端将允许收到全球广播服务。空降侦察平台需要宽带数据链接以在平台之间进行交互,以便提供很高的信号检测可能性,提供准确,及时的目标地理位置,借鉴剧院和圆锥形数据库以及处理能力,以利用强大的信号,并允许空气生气的UAV传感器数据访问UAV传感器数据。Rivet联合飞机将无法在剧院内侦察平台之间交换数据,并利用基于CONUS的国家资产来交换数据,合作地进行地理位置目标以及在近实时实现强大的目标。

铆钉联合操作员工作站升级采购和安装高分辨率操作员显示器以改善目标检测和信号识别。宽带光纤基础音频分布网络给所有操作员。宽带,高容量COTS录音机。高容量,数字,重编程,宽带解调器和处理器。当前的显示分辨率不足以允许对现代调制目标信号的准确信号检测和识别。当前的几个目标发射器超过了当前音频分布系统的带有频段,从而导致音频输出不可或缺。将几个接收器输出路由到特定的操作员位置,从而限制了响应剧院驱动的动态目标环境的灵活性。当前记录器的带宽和容量超过了新兴的宽带现代调制目标发射器。当前信号解调器的带宽和容量超过了新兴的宽带现代调制目标发射器。当前的解调器不可重编程。 It is expensive and time consuming to reconfigure them to process different target emitters.

铆钉联合驾驶舱现代化包括空军起搏器CRAG计划中的铆钉关节,以升级C-135舰队驾驶舱,并安装在不断发展的民用空气结构中运行所需的GATM/风扇航空电子产品。Pacer Crag安装新的指南针,雷达,多功能显示器和全球定位系统/飞行管理系统。此升级中包括新的燃油板,模式S IFF,TCA,精密高度计和Dama符合性的8.333 kHz通道收音机。该升级提供铆钉接头和RJ培训师(TC-135)飞机通用性,可用于C-135机队,用于培训,物流和零件。消除了与KC-135 Avionics不同的“消失供应商”问题。允许飞机遵守国际民航组织导航和通信标准,以在商业空气结构的跨跨海洋和欧洲部分进行操作。提高飞机的安全性,可靠性和可维护性。没有适当的导航/通信设备,飞机将被拒绝进入不断增加的民用空间。随着KC-135迁移到更新的设备,当前的航空电子系统将变得无法支持。C-135舰队的其余部分将失去通用性。 Common parts supply base will not be available.

CFM-56 Re-enginingcompletes re-engining of RC-135 aircraft with CFM-56 engines, and modifies the airframes to support re-engining. The project decreases cost of ownership and increases operational capability by installing new, fuel efficient engines. The upgrade also reduces maintenance manpower and logistics costs; the new engine is more reliable than the current engine, and the engine is common with the AMC KC-135 fleet. This project extends unrefueled range and time-on-station, and permits operations at higher altitudes, increasing airborne sensor field of view and effectiveness. Increased altitude range provides flexibility to airspace planners integrating aircraft into conjested airspace just behind the FEBA. The new engines decrease dependency on tankers for air refueling, and provide a capability to takeoff on shorter runways at increased gross weights. The project facilitates two-level maintenance concept reducing costs by 32%, and supports improved aircraft environmental system prolonging sensitive sensor life. Failure to fund re-engining to completion will leave a logistically split RC-135 fleet, equipped with two completely different engines. Increased cost of ownership due to duplicate spares at each operating location. Current TF-33 engines will become more difficult and costly to support requiring significant increases in future O&M costs (TF-33 parts no longer in production). The RC-135 fleet would lack commonality with re-engined KC-135 fleet, and the GAO validated $1.7B life cycle savings (total RC-135 program) would not be realized if this project was not funded.

铆钉关节空调(A/C)环境冷却修改procures and installs a vapor cycle cooling system. Includes a liquid cooling loop and heat exchangers. The system will provide in excess of 10 tons of additional cooling at all operating altitudes. Permits effective operation of collection systems added to the aircraft over the last decade. Reduces the requirements for auxiliary air conditioning during ground support operations. The heat load of the "mission equipment" has exceeded the capacity of the standard C-135 air-conditioning system. Skin heat exchangers have been installed to effect additional cooling. This system is only effective at altitudes in excess of 25,000 ft and has reached its capacity. To allow future growth in system capabilities, flexibility in operations, and crew comfort, additional capacity must be obtained. Without increased A/C capability, future growth of aircraft mission equipment, operational flexibility, and crew comfort will be curtailed.

铆钉关节Mission Trainer (RJMT)使用飞机硬件和软件,将为RC-135 Rivet联合侦察室人员提供高保真地面培训师。培训师将配备信号发电机,以创建和显示向侦察人员的全部雷达和通信信号。可以将复杂的,同步的信号环境呈现给机组,从而可以协调这些信号的剥削。培训师将配备Link-11,Link-16和TIBS Datalinks,以培训机组人员,以有效地与其他战斗管理资产进行互动。培训师将具有分布式交互式模拟,允许铆钉联合参与大规模练习。RJMT将提供初始资格,货币和升级培训。需要RJMT进行有效且具有成本效益的初始资格,延续/熟练程度以及RC-135侦察车厢的特定任务区域培训。当前的RC-135任务培训设备仅限于位置模型,过时的部分任务培训师,基于PC的程序培训师和音频播放工作站。这些设备在任务飞机上提供了广泛的空降训练航班。对任务飞机的严重依赖直接影响训练及时性,连续性和成本,而这种培训并不能充分模拟具有挑战性的收集环境。 RJMT will relieve the training load in the ops squadron, reduce dependence on aircraft availability for training, and facilitate decreasing the total aircrew TDY rate to 120 days per year (ACC goal). RJMT will provide an improved margin of safety during contingency operations. The only contingency training available is OJT during actual operations. The simulator will provide a safe controlled environment to practice tactics, develop new procedures, and exploit new capabilities. RJMT will allow RC-135 aircrews to interact, through Distributed Interactive Simulation (DIS), with other platforms' simulators. Through electronic exercises, the RJMT will provide aircrew exposure to multiple interoperability issues, tactics, and procedures. RC-135 operational effectiveness is significantly impacted because an integrated training device is not available for the training of crewmembers in Sensitive Reconnaissance Operations (SRO), contingency support, SIOP missions, and exercises. Ops tempo is reduced to support initial training and proficiency requirements. Air crewmember TDY will continue to exceed the stated ACC goal of 120 days per year. Capability to train entire squadrons on aircraft equipment modifications/upgrades is not available. Capability for RC-135 aircrews to electronically exercise with other platform simulators developing new tactics and procedures, performing interoperability issues will not be available.

铆钉关节船员舒适升级为机组人员安装现代商用飞机级厕所。新的厕所将使用当前的现场维修设备提供增加的持有能力和从地面提供服务的能力。提供一个水槽,上面有新鲜的流水,使机组人员可以洗手。当前的飞机厕所泄漏和缺乏男女机组人员所需的隐私要求。废物泄漏导致飞机结构组件的腐蚀问题。废物/消毒剂的气味使机舱空气犯规。由于较低的厕所设施引起的机组压力增加,该设施在任务人员区域内会产生废物/消毒气味。泄漏会腐蚀飞机的结构组件。

铆钉关节飞机

AC# 姓名 订购 delivered 笔记
62-4125 1996 1998 RC-135W [EX C-135B]
62-4127 1996 1998 RC-135W [EX C-135B]
62-4129 灵狮 Feb 87 88年4月22日 TC-135W trainer [ex C-135B]
62-4130 1996 1998 RC-135W [EX C-135B]
10 62-4131 垃圾场狗 6月79日 81年3月9日 RC-135W [ex RC-135M]
13 62-4132 Anticipation 84年11月30日 RC-135W [ex RC-135M]
62-4133 images
12 62-4134 这Flying W 07 Jan 81 16Aug 81 RC-135W [ex RC-135M]
9 62-4135 被提 05年9月5日 11月15日80 RC-135W [ex RC-135M]
11 62-4138 丛林刺客 09 Jan 80 Jul 81 RC-135W [ex RC-135M]
14 62-4139 Sniper 85年1月22日 RC-135W [ex RC-135M]
8 63-9792 75年10月17日 77年8月4日 RC-135W [ex RC-135U]
7 64-14841 红眼睛 01 Jan 75 78年1月19日 RC-135V [ex RC-135C]
2 64-14842 公平的警告 73年11月20日 05 Jan 75 RC-135V [ex RC-135C]
3 64-14843 不要打赌 73年12月4日 75年2月5日 RC-135V [ex RC-135C]
4 64-14844 问题少年 74年1月8日 75年3月3日 RC-135V [ex RC-135C]
5 64-14845 露娜·兰达(Luna Landa) 01年10月1日 75年11月21日 RC-135V [ex RC-135C]
6 64-14846 74年1月22日 18Dec 75 RC-135V [ex RC-135C]
1 64-14848 01年12月72日 73年8月8日 RC-135V [ex RC-135C]
15 99年10月14日 RC-135W [EX C-135B]

规格

Primary Function: 信号情报收集
承包商: RC-135V - LTV
RC-135W-电子系统
发电厂: Four JT3D engines
Length: 152'11“(46.6 m);
高度: 42'6“(12.9 m);
重量: 171,000磅(77,565公斤) - 空
155,000磅(70,307公斤) - 最大燃料
336,000磅(152,408公斤) - 最大毛
Wingspan: 145'9“(44.4 m);
Speed: .84马赫
范围: 11个小时 - 加油20小时
单位成本:
Crew: 4加任务人员的飞行船员(任务人员的规模根据任务而变化)
部署日期: 1996
Inventory: Active force, 14 (3 more to be delivered by 1998); ANG, 0; Reserve, 0

相关程序

Sources and Methods



FAS|智力|程式|收集||||搜索|Join FAS


https://金博宝网站www.tumejico.com/irp/program/collect/rivet_joint.htm
维护史蒂文·艾伯德(Steven Authgood)
由约翰·派克(John Pike)创建
更新于2000年3月5日(星期日)上午8:08:57